
A Multi-Threaded Time Domain TLM Algorithm for 
Symmetric Multi-Processing Computers 

Poman P.M. So and Wolfgang J.R. Hoefer 

Computational Electromagnetics Research Laboratory 
Department of Electrical and Computer Engineering 

University of Victoria 
PO Box 3055, Victoria, BC, V8W 3P6, Canada 

E-MAIL: POMAN.SO@ECE.UVIC.CA 
 

Abstract  —  A multi-threaded TLM algorithm will be 
presented in this paper.  The algorithm enables time domain 
field simulators to exploit the full computing power of multi-
processor computers, resulting in improved performance of 
field solver based CAD tools running on multi-processor 
computers. 

I. INTRODUCTION 

The processing power of Windows-based computers has 
been improving steadily in recent years.  The improvement 
is due to the increase in CPU frequency, decrease in 
memory access time, and the advances in symmetric multi 
processing (SMP) technology.  Intel Pentium based 
computers with dual processors are available from major 
computer makers such as COMPAQ, DELL, HP, IBM, 
and SGI.  Super SMP computers with multiple RISC 
processors are available from COMPAQ, CRAY, HP, 
IBM, SGI and SUN.  These multi-processor computers 
have multiple high performance CPUs that can work either 
independently or cooperatively with each other.   
If field solvers such as TLM are to exploit the processing 
power of the extra CPUs in the multi-processor computers, 
their underlying algorithms must be re-structured to 
contain multiple threads.  A thread is a path of execution 
in a program unit; a multi-thread program defines multiple 
execution paths that can be executed in parallel should the 
computer have the capability to do so.  On single 
processor computers, the threads are executed in a time-
sharing fashion; on N-processor SMP computers, N 
threads can be executed in parallel. 

A traditional single-threaded TLM program performs 
computation in a sequential manner via a system of 
do-loops.  Just recompiling the program with a new 
compiler for the multi-processor computers could not 
transform a single-threaded algorithm to a multi-threaded 
version because the compiler cannot change the program 

semantics.  In the following sections, we will present a 
general approach for transforming a single-threaded TLM 
algorithm into a multi-threaded implementation. 

II. OVERVIEW OF THE TLM ALGORITHM 

The fundamental procedures of the TLM algorithm are the 
scattering and transfer of voltage impulses on a TLM 
mesh.  Impulses incident on a node are scattered in all 
directions and then propagate to the neighboring nodes in 
a manner similar to a water wave propagating away from 
the center of its initial disturbance.  In matrix form, the 
impulse scattering phenomenon at any node can be 
expressed as: 
 

 [ ] [ ] [ ]r iV S V= ⋅  (1) 
 

Where [ ]iV and [ ]rV  are the vectors of the incident and 

reflected voltage impulses, and [ ]S is the impulse 
scattering matrix, [1].  Initially, the TLM mesh contains 
only incident impulses.  After applying equation (1), the 
TLM mesh contains reflecting impulses.  The propagation 
effect is modeled by swapping impulses on the 
transmission lines that connect two neighboring nodes.  
This sequence of operations forms the TLM algorithm.  
When boundaries and sources are present in the mesh, 
additional operations must be included.  Tong and Fujino 
[2] developed an efficient scattering algorithm by 
eliminating unnecessary floating-point operations.  Since 
then, researchers have been revisiting their TLM codes to 
reduce floating-point operations in the scattering 
procedure.  A recent and better-known scattering 
algorithm that achieves a minimum number of floating-
point operations per scattering step is given in Trenkic’s 
GSCN formulation [3].  However, as pointed out by 

0-7803-6540-2/01/$10.00 (C) 2001 IEEE

mailto:Poman.So@ECE.UVic.CA


Mangold et. al. [4], floating-point operation is just one of 
the issues that must be addressed when using TLM code to 
solve real engineering problems requiring a large TLM 
mesh.  In such a situation, memory access time becomes a 
bottleneck.  Mangold et. al. have outlined a unified 
scattering-transfer procedure to minimize the impact of 
memory access time overhead. 
 
Besides reducing floating-point operations and memory 
access time overhead, the performance of TLM code can 
be improved further by using massively parallel 
computers.  So and Hoefer, [5] and [6], have ported SCN 
algorithms to a number of massively parallel computers.  
These computers all have a large number (8 to 32K) of 
CPUs; each CPU is used to model a TLM node.  In order 
to take advantage of these massively parallel computers 
(MPPs), the scattering and transfer operations must be 
implemented using parallel languages designed for those 
computers.  Unfortunately, these computers are expensive, 
hence not widely available for general use. 
 
Since the current trend in high-performance computing 
architecture is towards multi-processor computers, a multi-
thread TLM algorithm that exploits the full power of these 
computers must be developed.  Because scattering and 
transfer of impulses are the two CPU intensive operations 
of the TLM algorithm, we will concentrate our discussions 
on these two procedures.   Nevertheless, the multi-
threaded paradigm is very general and can be applied to 
other critical paths of a field solver as well as to other time 
and frequency domain based field solvers. 
 

III. DIVISION OF A TLM MESH INTO SUB-REGIONS 

The scattering and transfer procedure of the TLM 
algorithm are always nested inside a system of iteration 
loops that control the order of execution per time step; 
Listing 1 shows the semantics of such a system of loops.  
The scattering function in Listing 1, Scatter_impulses, 
loops over the entire three-dimensional TLM mesh.  In 
order to support the multi-thread programming paradigm, 
the scattering function must be modified to loop over a 
sub-region of the mesh.  The Scatter_impulses function 
in Listing 2 contains a parameter list that allows the calling 
function to control the size of the sub-region to be used in 
the scattering operation.  Similar modifications can be 
made for the impulse transfer and signal processing 
functions as well as for the field animation procedures. 

 

Listing 1. A typical TLM control loop with its associated 
impulse scattering function, Scatter_impulses.  
The local variables x_size, y_size and z_size in 
the scattering function specify the dimensions of the 
TLM mesh.  The C++ syntax detail has been omitted 
from the functions. 

Iteration(){

for (n=0; n<num_of_iterations; n++){

Inject_source_voltages();

Scatter_impulses();

Transfer_impulses();

Enforce_boundary_conditions();

Sample_output_signal_and_signal_processing();

Compute_field_animation_data();

Display_result();

} }

Scatter_impulses(){

for (x=0; x<x_size; x++){

for (y=0; y<y_size; y++){

for (z=0; z<z_size; z++){

Mesh(x,y,z).Scatter_impulses();

} } } }

 
Listing 2. A modified TLM scattering function. 

Scatter_impulses(x1, y1, z1, x2, y2, z2){

for (x=x1; x<x2; x++){

for (y=y1; y<y2; y++){

for (z=z1; z<z2; z++){

Mesh(x,y,z).Scatter_impulses();

} } } }

IV. CREATION OF HELPER THREADS 

The critical modification that transforms the iteration 
procedure in Listing 1 to a multi-threaded version is given 
in Listing 3.  Thread_Data is an object type that provides 
storage for thread specific data, such as the indices for the 
mesh sub-region as well as the TLM operation to be 
performed on the sub-region.  The use of these data is 
demonstrated in the Thread function. 
 

In order for the Iteration_Thread function to work 
properly, all Thread_Data variables must have their op 
data member initialized to Wait.  The Iteration 
function of the main program is responsible for setting the 
op data members to Scattering, Transfer and Stop at 
the appropriate time.  This, in turn, causes the helper 
threads to execute the corresponding TLM functions over 

0-7803-6540-2/01/$10.00 (C) 2001 IEEE



a pre-defined sub-region of the TLM mesh.  The helper 
threads will go into a wait state upon completion of the 
assigned operations. 

The sub-region indices for the Scatter_impulses and 
Transfer_impulses functions can be computed by 
simply dividing the mesh equally along the longest axis of 
the TLM mesh.  This is usually sufficient for computers 
with 2 to 4 processors.  For SMP with more than 16 
processors, a recursive procedure that divides the mesh up 
along all three axes may be implemented 

The Create_Iteration_Threads function in 
Listing 3 is implementation dependent.  A version for 
Windows MFC application is shown in Listing 4, for IBM 
AIX, pthread_create should be used to replace the 
Windows AfxBeginThread function. 

 

Listing 3. A multi-thread iteration algorithm. 

Iteration(){

Thread_Data data[n];

Initialize_Thread_Data(data,n);

Create_Iteration_Threads(data,n);

for (n=0; n<num_of_iterations; n++){

Inject_source_voltages();

Signal_iteration_thread(data,n,Scattering);

Wait_until_all_threads_are_done(data,n);

Signal_iteration_thread(data,n,Propagation);

Wait_until_all_threads_are_done(data,n);

Enforce_boundary_conditions();

Sample_output_signal_and_signal_processing();

Compute_field_animation_data();

Display_result();

} Signal_iteration_thread(data,n,Stop);

}

Thread(Thread_Data &d){

while (d.op!=Stop){

switch (d.op){

case Scattering:

Scatter_impulses(d.x1,d.y1,d.z1,

d.x2,d.y2,d.z2);

d.op=Wait; break;

case Transfer:

Propagate_impulses(d.x1,d.y1,d.z1,

d.x2,d.y2,d.z2);

d.op=Wait; break;

case Wait:

default: sleep(0); break;

} }

Listing 4. A Windows MFC threads creation function. 

Create_Iteration_Threads(data, n){

for (m=0; m<n; m++){

data.op = Wait;

data.thread = AfxBeginThread(Thread,data+n);

} }

V. VERIFICATION OF THE ALGORITHM 

We have implemented the multi-threaded TLM algorithm 
for the Windows 95/98/ME/2000/NT and IBM AIX 
operating systems.   A coax-to-waveguide transition, 
Figure 1, was used to evaluate the performance of the 
algorithm on an 8-processor IBM RS/6000 SMP 
computer.  The structure was discretized with a mesh of 
100×50×50 ∆l3, 250000 nodes.  The observed processing 
times for 100 iterations using different numbers of threads 
are tabulated in Table 1.  In principle, the improvement in 
performance should increase linearly with the number of 
threads.  The maximum performance would be reached 
when the number of threads is equal to the number of 
processors.  However, the results in Table 1 indicate that 
the expected maximum improvement did not materialize.  
This is because the system was heavily loaded with other 
jobs, and not all processors were allocated to execute the 
helper threads in parallel.  By populating the system with a 
large number of threads, the TLM job was able to obtain 
more CPU time slices and hence, better performance. 
 
Similar tests were done on some single-processor PCs.  On 
these systems, the threads were executed sequentially in a 
time-sharing fashion.  Furthermore, when the TLM engine 
and user interface were executed in separated threads, the 
software became more responsive to user inputs.  
Therefore, the multi-threaded algorithm can be used 
routinely on traditional single processor computers. 
 
Table 1 CPU performance versus number of threads on a 

8-processor IBM RS/6000 SMP computer.  The last 
column is a measure of performance based on the 
elapsed time. 

Number of 
Threads 

Elapsed Time 
in seconds 

CPU Time in 
seconds 

kilo-nodes per 
second 

1 60.32 29.67 414 
2 32.64 30.03 766 
4 30.78 29.70 812 
8 29.95 30.04 835 

16 19.91 29.94 1,256 
32 12.43 28.66 2,011 
64 11.80 27.10 2,119 

0-7803-6540-2/01/$10.00 (C) 2001 IEEE



 
Figure 1 Coax-to-waveguide transition used to evaluate the 

performance of the new multi-threaded TLM 
algorithm; the structure was discretized with a mesh of 
100×50×50 ∆l3, 250000 nodes. 

 
 

VI. CONCLUSION 

A multi-threaded TLM impulse scattering and propagation 
algorithm has been presented.  The technique is very 
general and can be applied to all critical paths of a TLM 
field solver to accelerate its field solving speed on multi-
processor computers.  In principle, drastic improvement in 
speed can be achieved by using a thread of execution on 
each available processor.  However, our simulation results 
obtained with an 8-processor IBM RS/6000 SMP 
computer did not achieve the theoretical maximum 
performance.  Moreover, by populating the processors 
with a large number of threads allows the field solver 
process to obtain more time slices from the operating 
system; this improves the field solver performance on a 
heavily loaded system. 
 
Signal processing components and graphical user interface 
modules are also needed for computation of engineering 
parameters and display of results.  However, these added 
features generally do not incur a significant overhead in 
CPU time.  Two exceptions are the discrete Fourier 
transform (DFT) and field animation subroutines; they 
tend to consume a large portion of CPU time when a large 
number of frequency points are used, and high quality 
graphic output is demanded. 
 

Performance Measure

0

500

1000

1500

2000

2500

1 2 4 8 16 32 64

Number of Threads

Ki
lo

-n
od

es
 p

er
 s

ec
on

d

   
 
Figure 2 Performance enhancement as a function of the number 

of threads.  The data for this graph are given in 
Table 1. 

REFERENCES 

[1] P.B. Johns, A Symmetrical Condensed Node for the TLM 
Method, IEEE Trans. Microwave Theory and Tech. vol. 
MTT-35, no. 4, pp. 370-377, April 1987.  

[2] C.E. Tong and Y. Fujino, An Efficient Algorithm for 
Transmission Line Matrix Analysis of Electromagnetic 
Problems Using the Symmetrical Condensed Node, IEEE 
Trans. Microwave Theory and Tech. vol. MTT-39, No.8, 
pp.1420-1424, August 1991. 

[3] V. Trenkic, C. Christopoulos, and T. M. Benson, Efficient 
Computation Algorithms for TLM, in Proc. 1st International 
Workshop TLM Modeling — Theory and Application, pp. 
77-80, Aug. 1-3, Victoria, B.C., Canada, 1995. 

[4] T. Mangold, J. Rebel, W.J.R. Hoefer, P.P.M. So and P. 
Russer, What Determines The Speed of Time-Discrete 
Algorithms?, 16th Annual Review of Progress in Applied 
Computational Electromagnetics, pp.594-601, March 20-
24, 2000, Monterey, California. 

[5] P.P.M. So, C. Eswarappa and W.J.R. Hoefer, Distributed 
Parallel TLM Computation and Digital Signal Processing 
for Electromagnetic Field Modelling, an invited paper, 
International Journal of Numerical Modelling - Electronic 
Networks, Devices and Fields, vol. 8, no. 3/4, May-August 
1995, pp 169-185, John Wiley & Sons Inc.. 

[6] P.P.M. So, C. Eswarappa and W.J.R. Hoefer, Transmission 
Line Matrix Method on Massively Parallel Processor 
Computers, 9th Annual Review of Progress in Applied 
Computational Electromagnetics Digest, pp.467-474, 
March 1993, Monterey, California. 

 

0-7803-6540-2/01/$10.00 (C) 2001 IEEE


	A Multi-Threaded Time Domain TLM Algorithm for�Symmetric Multi-Processing Computers
	
	Computational Electromagnetics Research Laboratory�Department of Electrical and Computer Engineering�University of Victoria�PO Box 3055, Victoria, BC, V8W 3P6, Canada
	E-MAIL: POMAN.SO@ECE.UVIC.CA
	A
	Abstract  —  A multi-threaded TLM algorithm will be presented in this paper.  The algorithm enables time domain field simulators to exploit the full computing power of multi-processor computers, resulting in improved performance of field solver based CAD
	I. Introduction
	II. Overview Of The TLM Algorithm
	III. Division of A TLM mesh into Sub-Regions
	IV. Creation of Helper Threads
	V. Verification of the Algorithm
	References


	IMS 2001
	Return to Main Menu


