A Multi-Threaded Time Domain TLM Algorithm for
Symmetric Multi-Processing Computers

Poman P.M. So and Wolfgang J.R. Hoefer

Computational Electromagnetics Research Laboratory
Department of Electrical and Computer Engineering
University of Victoria
PO Box 3055, Victoria, BC, V8W 3P6, Canada

E-MAIL: POMAN.SO@ECE.UVIC.CA

Abstract — A multi-threaded TLM algorithm will be
presented in this paper. The algorithm enables time domain
field simulators to exploit the full computing power of multi-
processor computers, resulting in improved performance of
field solver based CAD tools running on multi-processor
computers.

1. INTRODUCTION

The processing power of Windows-based computers has
been improving steadily in recent years. The improvement
is due to the increase in CPU frequency, decrease in
memory access time, and the advances in symmetric multi
processing (SMP) technology. Intel Pentium based
computers with dual processors are available from major
computer makers such as COMPAQ, DELL, HP, IBM,
and SGI. Super SMP computers with multiple RISC
processors are available from COMPAQ, CRAY, HP,
IBM, SGI and SUN. These multi-processor computers
have multiple high performance CPUs that can work either
independently or cooperatively with each other.
If field solvers such as TLM are to exploit the processing
power of the extra CPUs in the multi-processor computers,
their underlying algorithms must be re-structured to
contain multiple threads. A thread is a path of execution
in a program unit; a multi-thread program defines multiple
execution paths that can be executed in parallel should the
computer have the capability to do so. On single
processor computers, the threads are executed in a time-
sharing fashion, on N-processor SMP computers, N
threads can be executed in parallel.

A traditional single-threaded TLM program performs
computation in a sequential manner via a system of
do-loops. Just recompiling the program with a new
compiler for the multi-processor computers could not
transform a single-threaded algorithm to a multi-threaded
version because the compiler cannot change the program

semantics. In the following sections, we will present a
general approach for transforming a single-threaded TLM
algorithm into a multi-threaded implementation.

II. OVERVIEW OF THE TLM ALGORITHM

The fundamental procedures of the TLM algorithm are the
scattering and transfer of voltage impulses on a TLM
mesh. Impulses incident on a node are scattered in all
directions and then propagate to the neighboring nodes in
a manner similar to a water wave propagating away from
the center of its initial disturbance. In matrix form, the
impulse scattering phenomenon at any node can be
expressed as:

1 =[s]-[r] (1)

Where [V]i and [V]r are the vectors of the incident and

reflected voltage impulses, and [S] is the impulse

scattering matrix, [1]. Initially, the TLM mesh contains
only incident impulses. After applying equation (1), the
TLM mesh contains reflecting impulses. The propagation
effect is modeled by swapping impulses on the
transmission lines that connect two neighboring nodes.
This sequence of operations forms the TLM algorithm.
When boundaries and sources are present in the mesh,
additional operations must be included. Tong and Fujino
[2] developed an efficient scattering algorithm by
eliminating unnecessary floating-point operations. Since
then, researchers have been revisiting their TLM codes to
reduce floating-point operations in the scattering
procedure. A recent and better-known scattering
algorithm that achieves a minimum number of floating-
point operations per scattering step is given in Trenkic’s
GSCN formulation [3]. However, as pointed out by

0-7803-6540-2/01/$10.00 (C) 2001 IEEE

mailto:Poman.So@ECE.UVic.CA

Mangold et. al. [4], floating-point operation is just one of
the issues that must be addressed when using TLM code to
solve real engineering problems requiring a large TLM
mesh. In such a situation, memory access time becomes a
bottleneck. Mangold ez. al. have outlined a unified
scattering-transfer procedure to minimize the impact of
memory access time overhead.

Besides reducing floating-point operations and memory
access time overhead, the performance of TLM code can
be improved further by using massively parallel
computers. So and Hoefer, [5] and [6], have ported SCN
algorithms to a number of massively parallel computers.
These computers all have a large number (8 to 32K) of
CPUs; each CPU is used to model a TLM node. In order
to take advantage of these massively parallel computers
(MPPs), the scattering and transfer operations must be
implemented using parallel languages designed for those
computers. Unfortunately, these computers are expensive,
hence not widely available for general use.

Since the current trend in high-performance computing
architecture is towards multi-processor computers, a multi-
thread TLM algorithm that exploits the full power of these
computers must be developed. Because scattering and
transfer of impulses are the two CPU intensive operations
of the TLM algorithm, we will concentrate our discussions
on these two procedures. Nevertheless, the multi-
threaded paradigm is very general and can be applied to
other critical paths of a field solver as well as to other time
and frequency domain based field solvers.

II1. DIVISION OF A TLM MESH INTO SUB-REGIONS

The scattering and transfer procedure of the TLM
algorithm are always nested inside a system of iteration
loops that control the order of execution per time step;
Listing 1 shows the semantics of such a system of loops.
The scattering function in Listing 1, Scatter impulses,
loops over the entire three-dimensional TLM mesh. In
order to support the multi-thread programming paradigm,
the scattering function must be modified to loop over a
sub-region of the mesh. The scatter impulses function
in Listing 2 contains a parameter list that allows the calling
function to control the size of the sub-region to be used in
the scattering operation. Similar modifications can be
made for the impulse transfer and signal processing
functions as well as for the field animation procedures.

Listing 1. A typical TLM control loop with its associated
impulse scattering function, Scatter impulses
The local variables x_size, y size and z_size in
the scattering function specify the dimensions of the
TLM mesh. The C++ syntax detail has been omitted
from the functions.

Iteration() {
for (n=0; n<num of iterations; n++){
Inject_source_voltages() ;
Scatter impulses() ;
Transfer_ impulses () ;
Enforce_boundary conditions();
Sample output_signal and signal processing() ;
Compute field animation_dataf() ;
Display_result () ;
b}
Scatter impulses () {
for (x=0; x<x_size; x++)
for (y=0; y<y size; y++) {
for (z=0; z<z_size; z++)
Mesh (x,y,z) .Scatter_impulses () ;

bhbd

Listing 2. A modified TLM scattering function.

Scatter impulses(xl, yl1l, zl, x2, y2, 22){
for (x=x1; x<x2; x++){
for (y=yl; y<y2; y++){
for (z=zl; z<z2; z++){
Mesh (x,y,z) .Scatter_ impulses() ;

b

IV. CREATION OF HELPER THREADS

The critical modification that transforms the iteration
procedure in Listing 1 to a multi-threaded version is given
in Listing 3. Thread Data is an object type that provides
storage for thread specific data, such as the indices for the
mesh sub-region as well as the TLM operation to be
performed on the sub-region. The use of these data is
demonstrated in the Thread function.

In order for the Iteration Thread function to work
properly, all Thread Data variables must have their op
data member initialized to wait. The Iteration
function of the main program is responsible for setting the
op data members to Scattering, Transfer and Stop at
the appropriate time. This, in turn, causes the helper
threads to execute the corresponding TLM functions over

0-7803-6540-2/01/$10.00 (C) 2001 IEEE

a pre-defined sub-region of the TLM mesh. The helper
threads will go into a wait state upon completion of the
assigned operations.

The sub-region indices for the Scatter impulses and
Transfer impulses functions can be computed by
simply dividing the mesh equally along the longest axis of
the TLM mesh. This is usually sufficient for computers
with 2 to 4 processors. For SMP with more than 16
processors, a recursive procedure that divides the mesh up
along all three axes may be implemented

The Create Iteration Threads function in
Listing 3 is implementation dependent. A version for
Windows MFC application is shown in Listing 4, for IBM
AIX, pthread create should be used to replace the
Windows AfxBeginThread function.

Listing 3. A multi-thread iteration algorithm.

Listing 4. A Windows MFC threads creation function.

Create Iteration Threads(data, n){
for (m=0; m<n; m++) {
data.op = Wait;
data.thread = AfxBeginThread (Thread,data+n) ;

I

Iteration() {
Thread Data dataln];
Initialize Thread Data(data,n);
Create Iteration Threads(data,n);
for (n=0; n<num of iterations; n++){
Inject_source_voltages() ;
Signal_ iteration_thread(data,n,Scattering);
Wait_until all threads_are_done(data,n);
Signal_ iteration thread(data,n,Propagation);
Wait_until all threads_are_done(data,n);
Enforce_boundary conditions() ;
Sample output_signal and signal processing() ;
Compute field animation dataf() ;
Display result();
} Signal iteration thread(data,n,Stop);
}
Thread (Thread Data &d) {
while (d.op!=Stop) {
switch (d.op) {
case Scattering:
Scatter impulses(d.x1l,d.yl,d.z1,
d.x2,d.y2,d.22);
d.op=Wait; break;
case Transfer:
Propagate impulses(d.x1l,d.yl,d.z1,
d.x2,d.y2,d.22);
d.op=Wait; break;
case Wait:

default: sleep(0); break;

V. VERIFICATION OF THE ALGORITHM

We have implemented the multi-threaded TLM algorithm
for the Windows 95/98/ME/2000/NT and IBM AIX
operating systems. A coax-to-waveguide transition,
Figure 1, was used to evaluate the performance of the
algorithm on an 8-processor IBM RS/6000 SMP
computer. The structure was discretized with a mesh of
100x50x50 AP, 250000 nodes. The observed processing
times for 100 iterations using different numbers of threads
are tabulated in Table 1. In principle, the improvement in
performance should increase linearly with the number of
threads. The maximum performance would be reached
when the number of threads is equal to the number of
processors. However, the results in Table 1 indicate that
the expected maximum improvement did not materialize.
This is because the system was heavily loaded with other
jobs, and not all processors were allocated to execute the
helper threads in parallel. By populating the system with a
large number of threads, the TLM job was able to obtain
more CPU time slices and hence, better performance.

Similar tests were done on some single-processor PCs. On
these systems, the threads were executed sequentially in a
time-sharing fashion. Furthermore, when the TLM engine
and user interface were executed in separated threads, the
software became more responsive to user inputs.
Therefore, the multi-threaded algorithm can be used
routinely on traditional single processor computers.

Table 1 CPU performance versus number of threads on a
8-processor IBM RS/6000 SMP computer. The last
column is a measure of performance based on the
elapsed time.

Number of Elapsed Time CPU Time in kilo-nodes per
Threads in seconds seconds second

1 60.32 29.67 414

2 32.64 30.03 766

4 30.78 29.70 812

8 29.95 30.04 835

16 19.91 29.94 1,256

32 12.43 28.66 2,011

64 11.80 27.10 2,119

0-7803-6540-2/01/$10.00 (C) 2001 IEEE

Figure 1 Coax-to-waveguide transition used to evaluate the
performance of the new multi-threaded TLM
algorithm; the structure was discretized with a mesh of
100x50x50 AZ*, 250000 nodes.

VI. CONCLUSION

A multi-threaded TLM impulse scattering and propagation
algorithm has been presented. The technique is very
general and can be applied to all critical paths of a TLM
field solver to accelerate its field solving speed on multi-
processor computers. In principle, drastic improvement in
speed can be achieved by using a thread of execution on
each available processor. However, our simulation results
obtained with an 8-processor IBM RS/6000 SMP
computer did not achieve the theoretical maximum
performance. Moreover, by populating the processors
with a large number of threads allows the field solver
process to obtain more time slices from the operating
system; this improves the field solver performance on a
heavily loaded system.

Signal processing components and graphical user interface
modules are also needed for computation of engineering
parameters and display of results. However, these added
features generally do not incur a significant overhead in
CPU time. Two exceptions are the discrete Fourier
transform (DFT) and field animation subroutines; they
tend to consume a large portion of CPU time when a large
number of frequency points are used, and high quality
graphic output is demanded.

Performance Measure

2500

2000 -

o
3
3

1000 -

Kilo-nodes per second

a
3
3

1 2 4 8 16 32 64
Number of Threads

Figure 2 Performance enhancement as a function of the number
of threads. The data for this graph are given in
Table 1.

REFERENCES

[1] P.B. Johns, A4 Symmetrical Condensed Node for the TLM
Method, 1EEE Trans. Microwave Theory and Tech. vol.
MTT-35, no. 4, pp. 370-377, April 1987.

[2] C.E. Tong and Y. Fujino, An Efficient Algorithm for
Transmission Line Matrix Analysis of Electromagnetic
Problems Using the Symmetrical Condensed Node, IEEE
Trans. Microwave Theory and Tech. vol. MTT-39, No.8,
pp.1420-1424, August 1991.

[3] V. Trenkic, C. Christopoulos, and T. M. Benson, Efficient
Computation Algorithms for TLM, in Proc. 1st International
Workshop TLM Modeling — Theory and Application, pp.
77-80, Aug. 1-3, Victoria, B.C., Canada, 1995.

[4] T. Mangold, J. Rebel, W.J.R. Hoefer, P.P.M. So and P.
Russer, What Determines The Speed of Time-Discrete
Algorithms?, 16th Annual Review of Progress in Applied
Computational Electromagnetics, pp.594-601, March 20-
24,2000, Monterey, California.

[5] P.P.M. So, C. Eswarappa and W.J.R. Hoefer, Distributed
Parallel TLM Computation and Digital Signal Processing
for Electromagnetic Field Modelling, an invited paper,
International Journal of Numerical Modelling - Electronic
Networks, Devices and Fields, vol. 8, no. 3/4, May-August
1995, pp 169-185, John Wiley & Sons Inc..

[6] P.P.M. So, C. Eswarappa and W.J.R. Hoefer, Transmission
Line Matrix Method on Massively Parallel Processor
Computers, 9th Annual Review of Progress in Applied
Computational Electromagnetics Digest, pp.467-474,
March 1993, Monterey, California.

0-7803-6540-2/01/$10.00 (C) 2001 IEEE

	A Multi-Threaded Time Domain TLM Algorithm for�Symmetric Multi-Processing Computers
	
	Computational Electromagnetics Research Laboratory�Department of Electrical and Computer Engineering�University of Victoria�PO Box 3055, Victoria, BC, V8W 3P6, Canada
	E-MAIL: POMAN.SO@ECE.UVIC.CA
	A
	Abstract — A multi-threaded TLM algorithm will be presented in this paper. The algorithm enables time domain field simulators to exploit the full computing power of multi-processor computers, resulting in improved performance of field solver based CAD
	I. Introduction
	II. Overview Of The TLM Algorithm
	III. Division of A TLM mesh into Sub-Regions
	IV. Creation of Helper Threads
	V. Verification of the Algorithm
	References

	IMS 2001
	Return to Main Menu

